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Abstract

Parallel computation fortwo-dimensionat co)wective flows in cavities with adiabatic horizon-

tal boundaries and driven by differential heating of the two vertical end walk, are investigated

using the Intel Paragon, Intel Touchstone Delta, and Cray 13D. I’he numerical scheme, includ-

ing a parallel multigrid solver, and domain decomposition techniques for parallel computing are

discussed in detail. Performance comparisons are made for the diffcreut  parallel systems, and

numerical results using various numbers of processors are dkcussed.
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Nomenc la tu r e

h height of cavity

1 length of cavity

g acceleration due to gravity

L = l/h aspect ratio of cavity

R Raylcigh  number

2“ non-dimensional temperature

x, z non-dimensional coordinates

u, w non-dimensional velocity components

PE number of processors

Greek symbols

~ coefhcient  of thermal expansion

~) non-dimensional stream function

K thermal diffusivity

v kinematic viscosity

o Prandtl number

w non-dimensional vorticity function
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1 Introduction

Convective motions driven bilateral temperature gradie~lts  incavitics art: i1~~~~ortal~tiI~ many areas

of interest in industry and in nature. Applications include the temperature control of circuit board

components under natural convection in the electronics industry, heating and ventilation control in

building design and construction, cooling systems for nuclear reactors in the nuclear industry, flows

and heat transfer associated with all stages of the power generation process, solar-energy collectors

in the power industry and atmospheric and fluvial dispersion in the envircmlnent.

Duc to the wide range c)f applications, studies of natural convection flow and heat transfer have

been vigorously pursued for many years. A typical model of convcctioll driven by a lateral thermal

gradient consists of a two dimensional rectangular cavity with the two vertical end walls held at

different constant temperature’s+.F /In order to dctcn-rnine  the flow structure and heat transfer across
L

cavities with different physical properties, numerous anal ytical, cx pcrilllcntal  and corn put ational

techniques have been used’~
.)

Experimental investigations of cavity flows clriven by lateral hcatillg  have been reported in [1],

[2], and [3]. In general, these flows consist of a main circulation in which fluid rises at the hot wall,

sinks at the cold wall, and travels laterally across the intervening core region. The flow structure is

dependent on three non-dimensional parameters: a Raylcigh  number It tm.sed on the height of the

cavity and the temperature difference across the end walls, the Prandtl number u of the fluid, and

the aspect ratio L (length/height).

For cavities of different aspect ratio, Rayleigh number and l’randtl U1lI nbcr, extensive nun] erical

results have been obtained by researchers during the PSSL twenty-five years. Elder [4] obtainecl a

numerical solution for a rectangular enclosure. Quon [5] carried out finite difference computations for
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convection in a square  cavity for a variety of dynamical boundary ccmditicms,  Rayleigh  numbers and

l’randtl numbers. Cormack,  I,eal and Seinfeld  [6] obtaine{l numerical solutions in shallow cavities

for a variety of Rayleigh  numbers, and more detailed nurJ lerical studies of cavity flows have been

carried out in [7] and [8].

For a shallow cavity (I. -+ m) and Rayleigh  numbers R << L the flow is again dominated by

conduction and consists of a Hadley  cell driven by the constant horizontal temperature gradient set

up between the end walls. Cormack,  l,eal  and Irnberger  [9] predicted that the flow consists of two

distinct parts: a parallel flow in the core region which extends for most of the length of the cavity

and a second, non-parallel flow near the ends. Non-linear convective effects first become significant

at t}lc ends of the cavity where the flow is turned when 1 {1 = ~ =: 0(1). ‘1’hc nonlinear end-zone

structure has been studied in [1 O], [1 1], and [12].

The present study focuses on parallel computation for convective flows in cavities with 1, >>1.

“l%c problem formulation is given in Section 2. Numerical srhcrne  and parallel computing techniques

are discussed in Section 3 and 4. ‘1’he  numerical results by using different parallel  systems and with

various numbers of processors are discussed in Section 5. Finally, conclusiolls  are outlined in Section

6.

2 Formulation

A closed rectangular cavity of length 1 and height h is considered in whic}l  tw~dimensional motions

are generated by maintaining the vertical end walls at different fixed telnpcraturcs lb and lb + Al’.

‘1’he  cavity is filled with a fluid of kinematic viscosity v, therll  la] diffusivity  K and cocff]cient  of thermal

expansion ~. ‘lhe  appropriate governing equations, subject to the Iloussi[lesq approximation, can
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bc written in dimcnsiorrlcss  form as

U-’(g + J(u, @ == V’w+ Rg ,

y72~ z, ..Q ,

is the Prandtl number and

gfiATh3
R == - - -G---

is the ltayleigh  number, where g is the acceleration due to gravity. And

is the vorticity,  with i,llc two Jacobians  given by

J(Lm)=g#-g; g, 81@
J(7’, tj) = ~-j;

[17’ (9$-.. .— —.. -.
(?Z ax

The boundary conditions on the cavity walls are

&=g=:o, z== O,L; i==::=o> .2 =(),1

7=0, 2=:0; 7=:1, z=].

with

(YF
X=o Onz=O’l

for insulated walls, where

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(lo)

(11)



is the aspect, ratio of the cavity.

It is easily verified that the governing equations and t )oundary conditions are consistent with

Gill’s [13] ccntr~symmetry relations

J(X, .2, q = J(L--Z,  1 - . 2 ,  t),

T(Z> Z,t) = l–i(L --z, 1 –Z, t)

1

(12)

L7(Z, ,?, t) =LJ(L-  z, 1 – z, q
J

which, for appropriate initial conditions, effectively allow only one half of the flow domain to be

considered,

‘l’he formal asymptotic structure of the steady flow ill a shallow cavity where 1, >> 1 and

l?l = 1{/1. = 0(1) is studied by Daniels  et al [11]. Further details about core solution’, end-zone

problem, and numerical study in shallow cavities are discussed in [14].

,-
cavity ( the core region) the flow is dominated by the lateral conduction

\/

circulation , so that

1 = < + 1,- 1{(( – ;) C1(RI, U) + R, F(2)}  + 0(1>-’)

and

.._

‘1’hroughout  most of the

associated with a IIadley

J = R,{l + L-’c, (R,, a)} F’(2) + O(L-2)

1
F(z) = ~ – ;3Z4 +- ;22 - —

1440

(13)

(14)

(15)

and c1 ( Rl, o) is a constant contribution determined by matching with solutions near the end wall.

Near the cold wall, the solution adjusts to the boundary conditions (8)-(1 O) in a square zone
\\

,/
/’

/
.

where x, z = O(l), (,//.( ‘ z

c

i’= L-@(z,z,t )+. . . . (~+ cm+’” “ ,y,J=~)(z, z,t)+-..., ti=[J?(x,  z,t)+ . . . . , ,

?

.
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U-’(% + J(LJ,  i))) ~= v2bJ  -t Rlg ,

VZ* = –w ,

OT
~ + J(T, 4) = V 2T ,

is required. From (8-11) these equations are to be solved subject tc]

O=g+o  on 2 =(),] ,

ty=T=o on ~=o

‘=8X 3

and to ~natch with the core soluticm

(16)

(17)

(18)

(19)

(20)

(21)

The core temperature is detcr~nined  to order 1,- 1 throl)gh the lnatchillg  requirement

cl == --2C (22)

but the value of c itself can only be determined by solving the end-zone problcm  (16)-(22). The aim

of the present work is to determine such solutions (1)-(11) on the whole flow domain or (16)-(22) on

the end-zone region if L >> and RI = R/L = 0(1) numerically by an effective parallel solver.

3 Numerical Scl~eme for the Systems

In order to solve the system (16)-(22) numerically, a finite  difference methcd is considered. It was

decided to crnploy an explicit method based on the Dufort -Frankel  sche~nc outlined in [15] to follow

the evolution of the system, in preference to an implicit method. Mctllods  of the latter type (for
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example Crank and Nicholson, Peaceman  and Etachford)  have the advantage of unconditional numer-

ical stability, allowing a large time step to be usecl, but involve the solution of large matrix systems

at each time step. l,ike these methods, the Dufort-1’rankel method has sccoxld order accuracy and

although it must meet a Courant condition to maintain numerical stability, it involves significantly

less computational time at each time step.

The heat equation (18) is discretized using central differences in z and z and Arakawa’s scheme

[16] for the Jacobian term, to be denoted here by J, leading to an explicit expression for the

‘+1 at internal grid points of the fortntemperature T i j

(23)

where

1 At At
xl = -— -- ——.

‘2 (Az)2  ‘-  ~Az)2 ‘

At
X2 = ; -t --At—z + - —

(Ax) (Az)2

At the lower horizontal boundary the temperature can be found using the second order formula

(24)

obtained using the boundary condition dT/13z  = O while a similar formula is applicable at the upper

boundary. At the cold wall T~,jl = O, while the bcmndary  condition on the hot wall takes T~~l = 1,

The vorticity equation (16) is treated in a similar manlier,  and at i~iternal  grid points



(25)

where

52 = ++ -~--+-—
(Az)2 (::)2

with the Jacobian term discretized using Arakawa’s schen le. ‘1’he vcmticity at the cold wall can be

determined in the second-order accurate form

Wo,j  = —’—(8~~2,j -- ~1 ,~))
2(Ax)2

j = 0,1,2, . . ..NZ.

Similar formulae are used for the upper, lower, and the right boundaries.

‘1’hc  explicit formulae (23-24) and (25)constitute  a tllrce-layer  schen!e

method  is needed on the first time step to initiate the com]wtation.  Ilcre  an

(26)

and so an alternative

iterative scheme based

on Successive Over-Relaxation (SOR) was used tc> solve the equations discretized  as a second-order

accurate implicit system and further details this are given in [1 2].

A five-point multigrid  method is used to solve the Poisson cqaution  (17) for the stream function

at cac}l time step, with the solution for a coarse grid used to revise t}lc required solution on a fine

grid. ‘l’he central difference approximation of equation at internal grid points is written in the form

and then Successive Over-llelaxation used to obtain the sol(ltion within  the multigrid  scheme, which

is dcscribcd  in full in [17]. on the all boundaries, @ is zero. At the present study, a parallel 4-

level-grid Poisson solver has been implemented on different parallel systems, based on the domain
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decomposition technique. A V-Cycle scheme is ccmsidered  in this code with the SOR method as a

smoother. More details about parallel implementations wil I be given in tllc next section.

‘1’he  overall schc]ne of computation for a given Rayleir,h  number, l’randtl number and Aspect

ratio can be described as follows. An initial state was usually taken either in the form of a conductive

solution with no motion 1’ = x/L, ~~ = w = 0(0 < x < L) or in the form of a steady-state solution

obtained at a lower Rayleigh  number R. ‘The temperature, vorticity  and stream function fields are

then found in succession at each time step, using the moclified  scheme for subsequent time steps.
$

q’he computation continues until a steady-state solution is achieved, as measured by the maximum

differences between successive values of 11 and u.

4 Parallel Computing Techniques

4 . 1  ConlPuting  Systenls

A parallel computing systcln  may be thought of as a collection of n colnputers  which communicate

with each other over some kind of communications network. A system with thousands of processors

is called massively parallel, and holds the greatest promise for significantly extending the range

of practically solvable computational problems. A diametrically opposite option is coarse-grained

parallelism, in which there is a snlall  number of processors. In this case, each processor is usually

fairly powerful, and the processors are loosely coupled, so that each processor may be performing a

different type of task at any given time. A significant aspect of parallel computers is the mechanism

by which processors exchange information. Generally speaking, there are two types, known as

shared memory and message-passing architectures. l’he  first uses a global shared memory that can

bc accessed by all processors, and in the second case, there is no shared memory, but rather each
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processor has its own local memory. l’rocessors  communicate through an interconnection network

consisting of direct communication links joining cer~ain pairs of processors. Some systems Inight  have

a shared memory, and at the same time each processor has its own local memory. In the following,

three different parallel systems will be introduced, which are the major computing systems for the

present work.

Intel Touchstone Delta: The Delta at the Concurrent Supcrcomputing  Consortium at California

Institute of ‘~echnology  is a message-passing MIMD (MultiIJe  Instructicm  Multiple Data) multicom-

putcr, consisting of an ensemble of individual and autonomous nodes that communicate across a

tw~dimcnsional mesh interconnection network. It has 512 computational it360 nodes, each with 16

M trytcs of memory and each node has a peak speed of 60 MegaF1 ,01’S. A Concurrent File System

(CIS) is attached to the nodes with a total of 95 Gbytes  of formatted disk space. The operating

systcm  is lntel’s  Node Executive for the mesh (N X/M).

lntc]  l’aragon  Xl’/S: This MIMD distributed machine has a 2D Inesh topology, with a faster

processor and network speed than the I)clta systcm. ‘1’lIe  one at the .1 ct Propulsion I,aboratory

is currently configured with 56 compute nodes, and each (JIIC  has a peali speed of 75 McgaFI,OPS

and 32 Megabyles  memory. The operating system  is the Paragon OSF/1, based on the OSF/1

operating system from the Open Software Foundation. The NX communication library was used for

the present study, which makes it portable to the Delta machine.

Cray T3D:  The Cray T3D  at J PI,,  currently one of the n lost powerful M lMD computers available,

has 256 compute nodes with 150 MegaI?I,OPS peak perf(mnance  and 64 Megabytes memory per

node. Logically, it has a shared memory, and physically a distritmtcd rncmory, associated with

a processor. It uses a three-dimensional Torus as the il]tcrconncct  network. A message passing
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library is available, based on PVM3  software developed by the Oak Ridge National Laboratory, the

University of Tennessee, and Emory University. Numerical results from these systems will discussed

later.

4.2 Domain Decomposition

In order to implement a parallel code with the Dufort-k>ankel-Multigrid  method for natural convec-

tive flow problems in rectangular cavities, a two-dimensiorlal  original firm mesh is partitioned into

blocks of consecutive columns (L >> 1) and distributed o)lto a logically linear array of processors

(Figure 1). Each processor has a subdomain  (1’igure 2), and the whole  co~nputational  job is divided

into n subjobs  if n processors are used. This is a natural way for data partitioning with the above

geometries since the communication among subdomains needs to be minimized. Once the partition

structure is set up, the next concern is about how to update all inforrnat  ion at neighbors in each

subdomain  to keep the cornprrtation  continuous over the w1101c  computational domain.

4.3 Parallel Dufort-Frankel-Multigrid  Algorithms

One of the major concerns in the design of a parallel code is communications. The major part of

communication is that each subdomain needs to exchange information with its neighbors and this

is done by direct message-passing software at each iterative level on Intel I)aragon,  Delta, and Cray

131). Since only the values at the boundaries of each subdornain need to be updated at each iteration,

the total amount of communication is still relatively small comparing with the whole computation.

The other part of communication occurs in 1/0 operations. The main structure of the parallel

algorithm for the whole computation is briefly summarized by the following steps:

1. Partition the corrrputational  mesh.
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2. Set initial conditions on each subdomain.

3. ltxchange  edge values with neighboring processors.

4. Perform DuforLFrankcl  update 1~~) locally on each processor.

5. Perform Dufort-Frankel  update W$) locally at all interior grid points on each processor,

6. Perform parallel Multigrid  update of ~~$~) on all processors

7. Perform boundary calculations for wf~) on all processors involving boundaries.

8. Check conditions for a steady-state solution. If satisfied, stop. Otherwise,

advance time step k ~- k + 1, and go to 3.

And the parallel Multigrid  solver is summarized ass the following:

For the I’oisson  equation V2~~ = –w, the discrete fornl can be written as A+h = Wh,  and the

parallel V-Cycle scheme I#h +- A4Y~h (~h,  Wh) with total grid levels=: N is outlined as :

l.l)ok=l, iV-1

‘“”)
Relax n] times on Ah~Jh = w“ with a given initial gums ~Jh , and after each relaxation

\

iteration, cxchangc  edge values with neighbors.

w 2 h  t- I;h(wh – Ah~~h), @ + o

lhrddo

2, k = N (t}lc coarsest grid), SOIVC  Ah@h  = Wh

3. I)ok=fv  - 1 , 1

ltclax n2 times on Ah@h = Wh with initial guess @, and after each relaxation

iteration, exchange edge values with neighbors.

Enddo
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lIere  Iih and J#h arc restriction gtor and interpolation operator respectively, and in the

present study, injection and linear  interpolation are used. A n example of hiultigrid structures with

a partitioning on 4 processors is given in Figure 3. ‘I’he data distribution c)!! each processor on one

grid level is illustrated in Figure 4, and a similar strategy is used for the rest  of the grid levels. Here

each processor needs to store its own subdomain data and its neighbor bcmndary  data as well.

5 Results and Discussion

Various numerical experiments have been carried out on the Intel Delta, the Intel Paragon, and

Cray T31). A model with RI $’.200,,  u = 0.733, L = 16, and mesh==  64 x 1024 was tested on those
, x>,

~/.)g W:’’”
machin  The computati~~”’  stopped when the following conditions

; 1
~ satisfied, corresponding to

the attainment of a steady-state solution:

. !k+l _max Ifi,j l~j]<(l,
1>3

k+l _
W~jl < Cz>max ]Wi,j ,

*33

where k is the time level index and c1 and C2 are usually taken

f [“

to bc lo-~.

In order to compare the performance on each system, 16 processors were used for the parallel

code with the above numerical model. The computation results are showed in I’able  1, which lists the

total CPU time on the test problem for the three systems. q’}le Cray T3D gives the best performance,

and the Paragon shows better performance than tile Delta. By various tests on the parallel systems

and comparisons with some previous results, the parallel code is proven numerically stable, efficient
4

‘;md reliable.
( ,/’

Numerical results were obtained for various Rayleigh  null Lbers  and Prandtl numbers. IIcre results

for the flow in water are discussed. ‘l’he solution for RI = 2000 and u = 6.983 in the steady-state

14
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will ustratcd in Figure 5 by the contour plots of stream fu]lction,  vorticity,  and temperature. The

,’

results have been compared with the asymptotic structures predicted by lJOU ndary-layer  theory [18].

According to asymptotic predictions, for a = 0.733 co = 5.2849 x 10-s, tllc c in (21) satisfies

c w R;’5C0 (a). Our numerical computation gives co == 4.9605 x 10 -5 which is in excellent agreement

with the theoretical prediction. Since the theory is based on high R.ayleigh number, numerical

simulation for higher Rayleigh number in the case of water will be considered in future work.

For low Prandtl numbers with a small aspect ratio, numerical computation for the whole cavity

is considered. Figure 6 shows the contour plots of stream fllnction,  vorticity,  and temperature for

Ya = 0.005, R = 4 00, and L = 4 wit}l a mesh size equal to 64 x 1024. The  results show the existence

of secondary flow consistent with liner stability analysis in [1 O] and [1 1].

More numerical cxpcrirncnts  have bccu investigated on the Cray ‘1’31 ) with various uurnbcrs  of

processors. Figures 7 and 8 are the scaling performances oft he parallel colnputation code. Various

meshes have been used with a test model of RI == 400, u : 0.733, 1, = 64 for a fixed t,i~nc steps.

l’he  largest problcm  has a global

unknowns of 41,744, 384. Figure 7

grid of 256 x 32{68 distributed on 256 processors, with total

?
shows the ratio of exccut ion time 7’(1 )/Y’(rz) verses the number

of processors. 21(I) is the execution time of a code for a given problem orI onc processor and Y’(n)

is the execution time of a code for a given problem on n 1,rocessors.  Figure 8 shows the scaling

performance for large global grids on the Cray T3D. l’hese  figures show that the speed up from 1

processor to 256 processors goes well for a larger grid, but for a small problem, it starts to slow

down when more processors come to play. This is mainly duc to the computational load for a small

problcm  is relatively small and the communication part weights much heavier for the whole code

when a large number of processors is used. # will be no longer the best strategy to partition the
. . . .
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computational domain into blocks of columns if the number of processors is much larger than the

aspect  ratio L of a cavity. In this case, 21) partitioning should be applied, which will be considered

in our future work. More numerical results for high Raylei$’,h  numbers ancl large grids on parallel

systems are given in the forthcoming paper [19].

6 Conclusions

In this paper, a detailed numerical study of natural convection hrs been clescribed  with different

parallel systems. A domain decomposition technique has bee]l eflciently used in solving the Poisson

equation with a Multigrid method and the other two time-dependent equations with the Dufort-

Frankcl  scheme. ‘l’he parallel code shows good convergence and eflciency  which indicate the potential

of parallel systems for solving large complicated fluid dynalnics  problcnls,  ‘1’he  present numerical

solutions appear to be in good agreement with theoretical predictions. ‘1’he discrepancy of CPU for

the whole computation on the three systems is due to the difltirence of hard}vare  on each system and

the network connection used. Obviously, from the point view of speed, the Cray ‘1’3D  ranks first,

and the l’aragon  is slightly faster than the l)clta,
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l’able

c,
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